Explicit Model Predictive Control Approach for Low-Thrust Spacecraft Proximity Operations
نویسندگان
چکیده
The key role of autonomous systems in future space missions has made model predictive control a very attractive guidance and control technique. However, the capability of low-power spacecraft processors to handle the real-time computational load of this technique still needs to be fully established, especially for complex control problems. This paper introduces a method to improve the computational efficiency of model predictive control when applied to the problem of autonomous rendezvous and proximity maneuvering using low-thrust propulsion. To ensure safe trajectories in this scenario, a long control horizon is required and the control problem must be solved at a relatively fast sampling rate. The proposed design addresses such requirements by parameterizing the thrust profile with a set of Laguerre functions. In this setting, the number of control variables can be made significantly smaller than the length of the control horizon, as opposed to standard design methods. By exploiting this property in combination with multi-parametric programming techniques, an explicit control law is derived that is suitable for realtime implementation on simple hardware. The performance of this approach is demonstrated on a small spacecraft mission and compared with that of other control techniques.
منابع مشابه
Automated Proximity Operations Using Image-Based Relative Navigation
This paper describes a system for relative navigation and automated proximity operations for a microsatellite using continuous thrust propulsion and low-cost visible and infrared imagers. Image processing algorithms provide range, range rate, and spherical angle estimates relative to a target spacecraft using knowledge of the target spacecraft’s geometry. A differential correction batch filter ...
متن کاملHigh-performance three-dimensional maneuvers control in the area of spacecraft
Contemporary research is improving techniques to maneuvers control in the area of spacecraft. In the aspect of further development of investigations, a high-performance strategy of maneuvers control is proposed in the present research to be applicable to deal with a class of the aforementioned spacecrafts. In a word, the main subject behind the research is to realize a high-performance three-di...
متن کاملQuaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques
In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...
متن کاملAn Offline-Sampling SMPC Framework with Application to Automated Space Maneuvers
In this paper, a sampling-based Stochastic Model Predictive Control algorithm is proposed for discrete-time linear systems subject to both parametric uncertainties and additive disturbances. One of the main drivers for the development of the proposed control strategy is the need of real-time implementability of guidance and control strategies for automated rendezvous and proximity operations be...
متن کاملIterative explicit guidance for low thrust spacecraft
A retargeting procedure is developed for use as a nonlinear low thrust guidance scheme. The selection of a control program composed of a sequence of inertially fixed thrust-acceleration vectors permits all trajectory computations to be made with closed form expressions, and allows the controls to be represented by constant parameters, thrust-acceleration vectors and thrusting times. By requirin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014